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Abstract-A finite difference solution, based on the “double sweep” method, has been found for solving the 
non-linear differential equations which describe coupled diffusion of heat and mass (moisture) in hygro- 
scopic textile materials. In addition to the diffusion equations, a rate equation has been introduced des- 
cribing the rate of exchange of moisture between the solid (textile fibres) and the gas phase (pore space). 
A numerical application of the theory has been made using wool as an example for the hygroscopic 
material and it is shown that, similar to forced convective transfer, transfer of moisture from air to the wool 
and from the wool to air are not symmetrical processes. The magnitude of the error caused by neglecting 
the rate of transfer of moisture between the solid and gaseous phases as compared to the time scale of the 
diffusional processes is discussed and shown to depend on the physical dimensions of the slab. Examples are 
also given of positive and negative temperature and concentration fronts which may be set up in the slab, 
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heat of sorption or desorption 
of water vapour by solid phase. 
This is a function of the con- 
centration, C, [calg- ‘I; 
density of the solid [gcmv3] ; 
dimensionless time. 

INTRODUCTION 

THE PROBLEM of unsteady state diffusion into an 
assembly of hygroscopic textile fibres was first 
proposed and analysed in 1939 [l] by Henry 
who considered the penetration of atmospheric 
moisture into bales of cotton. Henry showed 
that in this system, in which moisture diffuses 
into a porous structure, the solid phase of which 
is hygroscopic, the concentration wave entering 
the structure gives rise to a secondary tempera- 
ture wave. This wave, in turn, diffuses (by con- 
duction) at a rate differing, in general from that 
of the concentration wave. 

These phenomena are of great interest in 
textile technology. Changes in weight of bales 
produced by differing atmospheric conditions 
are of economic significance, changes in moisture 
content or distribution of moisture content of 
cloth or yarn packages frequently affect subse- 
quent processing and, finally, changes of temper- 
ature produced by sorption or desorption of 
moisture play a role in clothing physiology. 

A new evaluation of the coupled diffusion 
pt%blem is made here as our knowledge of the 
properties of textile tibres (particularly wool) 
has become more extensive during the inter- 
vening years. In addition, the advent of elec- 
tronic computing has made it possible to solve 
the strongly non-linear differential equations 
which arise, obviating many of the simplifying 
assumptions which had to be made by Henry in 
his original work. 

FORMULATION OF THE PROBLEM 

Consider a small element of volume of a slab 
of a homogeneously packed textile material of 
unit area (parallel to the plane of the slab) and 
of thickness, 6x. Water vapour is free to diffuse 
into the interlibre void spaces and to be sorbed 

or desorbed by the libres. Volume changes of 
the fibres due to the changing moisture content 
are neglected. 

The equations of conservation of mass and of 
heat will be expressed in terms of unit volume 
of the textile-air mixture. Water vapour accumu- 
lates in the unit element both in the void space 
and in the libres. The total accumulation in 
time dt is given by 

($$+s%)dr 

where E = (1 - d,/p). The transport of mass by 
diffusion is given by 

a2c, 
K- ax2 ’ 

the diffusion flux depending on the concentra- 
tion of water vapour in the interlibre void space. 
Thus, the equation of conservation of mass 
becomes 

K 
a2c, acF acA 
yp= at+5F (1) 

It should be noted that K has not the numeri- 
cal value of the diffusion coefficient of water 
vapour in air, but is related to it. At the present 
time [2] no satisfactory theory exists which re- 
lates the diffusion coefficient of a gas or vapour 
inside a porous body to the porosity and struc- 
ture of the body. However, K may be readily 
determined for a given structure from steady- 
state diffusion measurements. 

Changes in heat content of the volume 
element arise from several processes: conduc- 
tion into or out of the element, changes of phase 
of water vapour (sorption or desorption), 
changes of temperature of the solid and of the 
gaseous phase. The contribution due to the last 
cause is very small and will be neglected. It 
follows that the equation of heat balance may 
be written 



Both C, the heat capacity of the solid and 1, 
the energy of change of phase, are functions of 
the concentration of water absorbed by the 
solid. These relationships can be found experi- 
mentally. 
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the rate of diffusion for a given libre depending, 
apart from minor factors, on the magnitude of 
the concentration change as well as the absolute 
value of the concentration at which the change 
takes place. 

Most textile tibres are of very small diameter 
(15-50 u ) and have a very large surface to 
volume ratio. Transfer of heat across the surface 
and conduction inside the tibres are very rapid 
processes. Hence, the assumption of instan- 
taneous temperature equilibrium between solid 
and gaseous phases which has been made in 
equation (2) does not lead to an appreciable 
error. 

In his original work, Henry [l] assumed that 
the transfer of water vapour from the libres to 
the air surrounding them, as well as the transfer 
of heat, takes place instantaneously. 

This assumption will lead to an appreciable 
error in certain circumstances and is not made 
in the present development. A rate equation is 
introduced which allows for the finite time which 
is required to establish moisture equilibrium. 

The process of uptake of moisture by a wool 
fibre appears to occur in two stages. There is a 
rapid first stage which exhibits the character of 
Fickian diffusion into a cylinder [3, 41. This 
stage is followed by a slower change in moisture 
content which follows approximately an ex- 
ponential course with respect to time. The first 
stage of uptake of moisture extends over a 
period of several minutes while the second stage 
may last several hours. Because of the large time 
constant of the second stage of uptake of 
moisture, it is believed to be caused by a mole- 
cular relaxation process due to the swelling of 
the fibre which changes the free energy of the 
keratin, thus causing a further increase in the 
moisture content. 

In the development of a realistic rate equation 
for mass transfer a choice of several intensive 
variables may be made to represent the driving 
force determining the rate of transfer. The one 
chosen here is the difference between the 
relative humidity of the air and that of the 
textile fibre based on its instantaneous moisture 
content and temperature. The advantage of this 
choice arises from the equilibrium relationship 
(isotherm) between moisture content of the 
textile material and relative humidity which is 
essentially independent of temperature in the 
range of temperatures considered. The rate of 
moisture exchange is assumed to be pro- 
portional to the relative humidity difference. 
The rate equation for mass transfer may be 
written 

Equation (3) therefore, is only a useful 
simplification of a complex phenomenon. It is 
used throughout this paper for devising general 
results. In the specific case which is discussed 
later, in which the present theory is tested ex- 
perimentally, a more sophisticated rate equation 
is employed. In this equation, account is taken 
of the two-stage sorption behaviour of the 
textile material (wool) and its concentration 
dependence. In this case it has been found that 
the equation 

1 aCF ____- 
~(1 - E) at 

simulates the sorption behaviour of single fibres 
when y,,ly, > S, k, = 0. 

k, and kz are the rate constants appropriate 
for the first and second stages of sorption res- 
pectively, S is a parameter controlling the 

1 aC, 
~- = k(Y, - YF). 
P(I -E) at (3) 

Work published over the last 10 years [3-51 
has revealed that diffusion of moisture into 
individual wool Iibres is a verv comnlex orocess. d 1 I , pseudo-equilibrium towards which the first 
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stage of sorption tends and 

l-41 - 4 

a factor-to allow for the concentration depend- 
ence of the diffusion. Rate equations of this kind 
have to be derived from experimental data for 
each particular sorption system which is under 
consideration. 

Introducing the dimensionless time 

r+ 

and the dimensionless distance 

x+ 

equations (l-3) become 

a=c, a 
-=~ic,+&CA) ax2 

Qa2T 13 -~ 
K ax2 

= -& {C(C,) T - A (C,) Cd 

and 

(5) 

(6) 

(7) 

where 

k, _ ~(1 - 4 Ck 
K . 

The simultaneous partial differential equa- 
tions (5-7) thus represent the formulation of the 
problem of coupled diffusion of heat and mass 
in a porous body the solid phase of which can 
absorb the diffusing substance according to a 
specified rate law. 

The solution of these equations requires that 
y, and yF are expressed in terms of C,, CF and 7: 
If the perfect gas law is assumed 

V V 

‘a = P,(T) zcATzi 
where P,(T) is the saturation vapour pressure of 

water (in the present case) and is a function of 
temperature only. A numerical expression for 
this relationship is given in the Appendix. 

The equilibria relative humidity of the 
fibres, y,, is related to the concentration of water 
sorbed by the textile material and can be ex- 
pressed by the isotherm 

yP=f -!zE.._. 
[ 1 P(l - 4 

(9) 

Relationships of this kind are known for most 
textile materials, a numerical representation of 
the isotherm for wool is given in the Appendix. 

The porosity, E, for a given textile assembly 
can be determined accurately and for most 
practical cases lies in the range 0*7-0.95. 

The ratio of the thermal conductivity of the 
fibre-air mixture to the diffusion coefficient of 
water vapour in the mixture. i.e. Q/K, can be 
obtained from independent measurement. Usu- 
ally Q is about 20-50 per cent [7] higher than 
the thermal conductivity of air. K, the diffusion 
coefficient inside the porous structure is less than 
the corresponding value in air and may vary 
typically from 90 to 50 per cent of the value in 
air [S]. Thus, the variation of magnitude of the 
ratio Q;K encountered in practical examples 
does not exceed 3 to 1. 

The rate constant, k’ is chosen so as to repre- 
sent as closely as possible the single libre 
sorption kinetics. 

The functional relationships for the heat 
capacity of the moist textile material, CCC,) and 
the energy of sorption, l(CF) depend on the type 
of textile used. For wool, these relationships are 
given in Appendix. 

METHOD OF SOLUTIdN 

Initially, we are interested in the simultaneous 
solution of equations (5-7) for diffusion into a 
slab of finite thickness. Because of the non-linear 
character of the equations, the method of finite 
differences was adopted For their solution. 
Following closely the scheme mentioned in 
Richtmeyer [9] as due to Laasonen [lo], 
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equation (5), for example, becomes 

&[C,(X + 6X,r + 6z) 

- 2 CA(X, z’ + 6r) + C,(X - 6X, z + Sr,] 

= [C,(X. r + 6r) - &4x, r)] 

+ E [C,(X. z + 6r) - C,(X, z)]. (10) 

Equations (6) and (7) can be formulated 
similarly. The functions C(C,) and n(C,) in 
equation (6) are evaluated at the mesh point 
(X, r) while a more refined approximation is 
used to evaluate the functions y, and y, in 
equation (7) at the mesh point (X, z + 6~). This 
is done by taking the derivative of these functions 
at the point (X, z) and extrapolating to (X, r + 
6~). For the function y,, this becomes 

ah 
y,(X, 7 + 67) = y,(X* 4 + E ( > x 3 

x z[C,(X, z + Sz) - C,(X, z,] 
ah 

+ w ( > r[T(X, r + 67) - T(X,r)] (11) 
X 

and a similar expression (without the time 
derivative) is obtained for y,. The derivatives 
are found from equations (8) and (9). 

In solving equations (5-7) in the finite differ- 
ence form it is convenient first to substitute 
equation (7) into (5) and (6) so that two equations 
in CA and T are obtained. Once these are 
evaluated, C, follows directly from (7). 

If the slab of textile material of unit dimension- 
less thickness is subdivided into N sections of 
equal thickness, 6X, there will be N + 1 points 
on the mesh in the X-dimension and hence 
N + 1 values of any one of the variables at any 
one time, z. 

Since equations (5) and (6) in the finite differ- 
ence form [such as (lo)] contain three of these 
consecutive variables each, a total of 2N - 2 
equations must be set up across the slab. As the 
boundary conditions on each side of the slab 
give each two values of the variables, namely 

C,(O, z), 7’(0,~) and C.&X, r). T(X, z), 

the total number of variables is reduced to 
2N - 2 for the 2N - 2 equations. A solution 
can thus be obtained from a conventional 
matrix inversion. 

It has been shown by Richtmeyer (ll), how- 
ever, that a more economical method of solving 
the set of simultaneous equations exists if a 
linear recurrence relationship can be found be- 
tween terms denoting adjoining space intervals. 
This is the case in the present problem and 
Richtmeyer’s simplified scheme is applicable. 

If the initial condition of the slab is given by 

C,(NGX, 0); C,(NGX, 0) and T(NGX, 0) 

for all N6X at z = 0 

and a new boundary condition imposed, then 

C,(NGX, 1); C,(NGX, 1) and T(NGX, 1) 

can be calculated as just described for r = 1 and 
all values of N from 1 to N - 1. This process can 
be iterated for as many time intervals as required. 
The solution of the equations was found to be 
stable for all values of 6X and 6~. 

For a mesh of 10000 points and N = 20 the 
computing time using a CDC 3600 computer 
was about 80 s. 

The solution of the coupled diffusion problem 
for a parallel slab can be adapted easily to the 
corresponding case of diffusion into a sphere. 
For diffusion into a sphere, equations (5) and (6) 
become 

azc, 
ar2 + ;az= k{C; E. CA} (12a) 

and 

WV 

Equation (7) remains unchanged except that 

k, = ~(1 - 4 a2k 
K . 

It can be shown that by making the substitution 



858 P. NORDON and H. G. DAVID 

equations (12a) and (12b) become identical in 
form to the original equations (5) and (6) and 
hence the method of solution is identical to that 
for the slab. Since at the centre of the sphere, 
I = 0, the boundary conditions for the new 
variables become 

G(O. 7) = 0; C;7(0, z) = 0 and T’(O, ~1 = 0. 

GENERAL DEDUCTIONS FROM THE 

NUMERICAL SOLUTIONS 

Since the diffusion problem discussed in this 
paper deals with a highly non-linear system, a 
numerical evaluation of the theory must, of 
necessity, take recourse to a specific example. 
Thus, use is made of the perfect gas law and the 
dependence of the saturation vapour pressure 
of water on temperature for the diffusate and of 
the equilibrium isotherm, energy of sorption 
and specific sorption kinetics for the stationary 
phase which, in the present example is wool 
(Appendix). 

In discussing the results, particular attention 
is paid to Henry’s earlier work [l] because the 
present theory may be regarded as an alternate 
treatment. Brief mention is also made of an 
experimental application of the theory using a 
slab of wool felt. 

ASYMMETRY OF DIFFUSION INTO, 

OR OUT OF, SPECIMEN 

In Fig. 1, the temperature changes in the 
central plane of a slab of wool are shown for 
diffusion into, or out of, the slab. 

For diffusion into the slab, the wool was taken 
to be initially dry, at room temperature, and 
suddenly subjected to a change in which the 
relative humidity of the air on both sides of the 
slab was raised to 80 per cent. For diffusion out 
of the slab, the wool was taken to be initially in 
equilibrium with air at 80 per cent relative 
humidity and at room temperature. It was then 
subjected to a change in which the relative 

x = o-25 

L = l-6 
Temperoiure rise. 
diffusion :oto slab 

Temperature fall, 
diffusion out of slab 

500 1ooo 600 2000 2500 

Dimensionless time. T 

FIG. 1. Temperature in centre of slab. Boundary conditions 
change from 0 to 80 per cent and from 80 to 0 per cent 

relative humidity. 

humidity on both sides of the slab was reduced 
to 0 per cent. A pronounced asymmetry is noted 
which is similar to, but not quite as marked as 
that observed in the case of forced convective 
[ 121 heat and mass transfer and which is believed 
to be due mainly to the non-linearity of the 
saturation vapour pressure curve of water [13]. 
This behaviour is not predicted by Henry’s 
original theory as he used a linearized relation- 
ship between concentration of sorbed water. 
concentration of diffusing water vapour and 
temperature. The present model also predicts 
different rates of weight change for the two cases, 
as shown in Fig. 2, although this result 
supposes that the kinetics of sorption 
desorption of individual libres are similar. 

INFLUENCE OF SIZE OF SLAB 

AND SORPTION KINETICS 

pre- 
and 

The parameter, k’, in equation (7) which 
controls the influence of the rate of sorption on 
the coupled diffusion of heat and mass depends 
not only on the rate constant for sorption by 
individual libres but also on the size of the 
specimen, L. and the diffusion coefficient, K. 
Given k for a particular libre type, a large value 
of L (or small value of k) produces a large value 
of k’. Since X,/Jr must be finite, an infinitely 
large value of k’ requires that yA = y, and 
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corresponds to the assumption of instantaneous 
equilibrium between air and fibres with respect 
to mass transfer. In Fig. 3 the influence of the 
parameter, k’, is shown on the temperature in 
the centre of the slab, all other parameters being 
equal. When k’ is sufficiently large, its influence 
decreases and the overall process is diffusion 
controlled. For low values of k’ (small specimen) 
the process is limited by the sorption kinetics of 
the solid phase. 

INFLUENCE OF THERMAL AND 
MASS CONDUCIWITIES 

The value of the parameter, Q/K,* has a 
pronounce influence when the overall process 
is diffusion controlled and a small one when 
controlled by the rate of sorption. This is shown 
in Fig. 4 where the temperature in the centre of 
the slab is plotted for two values of Q,/K at three 
different rates. 

* It may have been more satisfactory to define Q as the 
thermal diffusivity, making Q/K dimensionless. This was 
thought inadvisable as the heat capacity of the solid phase 
in this problem is variable. As defined, Q/K is a constant for 
a given textile assembly and does not depend on moisture 
content. 

@xl 
I- 

Unfortunately no data are available for the 
variation of Q/K for different textile assemblies. 
However, it should not deviate greatly from a 
value of 2.3 x 10-4calcm-3”C-’ at room 
temperature. 

EFFECT OF NON-LINEARITY OF 
ISOTHERM AND ENERGY 

OF SORPTION 

A numerical evaluation of diffusion into the 
slab for sequential and cumulative humidity 
steps is shown in Figs. 5 and 6 respectively, the 
temperature at the centre of the slab taken as 
the dependent variable. The shapes of the curves 
for the sequential steps do not vary markedly 
suggesting that the influence of the curvature of 
the isotherm is not very large. 

The more pronounced change in shape of the 
curves in Fig. 6 is probably due to a cumulative 
effect depending on the size of the step. It is not 
believed to be due to the form of the rate equa- 
tion (7) as, for the example given, the process was 
chosen to be mainly diffusion controlled. Similar 
considerations apply to diffusion out of the slab, 
although the caiculated curves are not given 
here. 

Squam mot of dimensionlw time, Jr 

FIG. 2. Total moisture content of slab. Boundary conditions change from 0 to 
80 per cent and from 80 to 0 per cent relative humidity. 
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,Or 
Parameters 

6 = 0.8 

k’ 

I - 2.4 x lO-5 

I 
$= 4x lo+ II - I’2 x lo-4 

30 K - = 0.25 III 6.0 x I@ 

L = 1.8 E - 3.0 x 10-3 
Y - 1.5x 10-2 
m - 7.5 x 10-2 

YII- 3.75x 10-l 

I I I I I I 
50 100 150 200 250 300 

Dimensionless time, T 

FIG. 3. Temperature in centre of slab. Change from 0 to 80 per cent relative humidity for 
various thicknesses of slab. 

SPATIAL DISTRIBUTION OF TEMPERATURE 

AND MOISTURE CONTENT, 

TOTAL QUANTITY OF MOISTURE 

GAINED OR LOST 

There are no special features which the present 
system exhibits with regard to the spatial distri- 
bution of temperature and moisture content in 
the slab which may not be inferred from ordinary 
diffusion. In the case where the boundary condi- 
tions are changed from 0 to 80 per cent and 80 
to 0 per cent relative humidity, results for spatial 
distributions at various values of T are given in 
Fig. 7. For the same case, the distribution of 
moisture in the slab is plotted as a function of 
distance in Fig. 8. 

vapour, the absorbed moisture content, etc., 
which result from specified changes in the 
boundary conditions. Henry [l] predicted from 
his theory of coupled diffusion that a change in 
the boundary conditions would, in general, give 
rise to two sets of diffusion fronts or waves. One 
set consists of a vapour concentration and an 
associated temperature front which moves rela- 
tively fast and is associated mainly with heat 
transfer and the other set, also consists of a 
concentration and temperature front which is 
relatively slow and associated with mass transfer. 
The relative amplitudes of these fronts may be 
positive or negative and will vary in magnitude. 
depending on the change in boundary condi- 
tions. 

FORMATION OF DIFFUSION FRONTS The present finite difference evaluation of the 
Perhaps the most interesting aspect of the basic differential equations fully agree with 

coupled diffusion problem is the formation of Henry’s conclusions. For example, in the case 
fronts of temperature, concentration of water in which the relative humidity is changed from 
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Parameters 

Dimensionless time, T 

FIG. 4. Temperature at centre of slab. Change from 0 to 80 per cent relative humidity. 
Varying thermal conductivities for three thicknesses of slab. 

0 to 80 per cent without change in external 
temperature, the fast temperature front is repre- 
sented by a rise in temperature, reaching com- 
pletion at about r = 72 (Fig. 1) and the slow 
front by a drop in temperature of equal ampli- 
tude, so that finally, when both fronts have 
passed, the original temperature is regained. Of 
the two corresponding vapour concentration 
curves, only the slow one is observed as the fast 
one is very small and superimposed on the major 
one. 

A subsidiary fast moisture concentration 
front is shown in Fig. 9 for the same slab of wool 
where the boundary conditions are changed by 
keeping the absolute humidity external to the 
slab constant and changing the tem~rature. 

31 

The two tem~rature fronts are both positive 
and shown in Fig. 10. 

Another change of boundary condition, which 
is not evaluated here, is a change of external 
temperature, keeping the total moisture content 
of the tibre assembly constant (Walker [14]). 

EXPERIMENTAL VE.RIFICATION 

A detailed experimental verification of the 
theory has not been attempted to date. However, 
measurements of the temperature in the central 
plane of a slab of felt of density 0.264 g cm- 3 and 
&I thick were made when air at 0 and 80 per 
cent relative humidity was blown over it at 20°C. 
Difftculties in keeping the boundary layer thin 
in relation to the slab and, at the same time not 
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ib 8C+lDO% relative humidity 

Dimensbnlrss time, T 

FIG. 3. Temperature at centre of slab for four sequential steps in relative 
humidity. 

40 

30 

-I 

u 

% 

.; 20 
L 

O-ID0 % relative humldity 

Fummslers 
c E 0.8 
n 

Dlmensionless time, r 

FIG. 6. Temperature at centre of slab for four cumulative steps of relative 
humidity. 
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Dimensionless distance, X 

7. Spatial distribution of temperature inside slab. 
Change from 0 to 80 per cent relative humidity, 

Parameters 
OS in Fig.1 

0 0.1 0.2 0.3 04 O-5 06 @? 06 0.9 
-I 

I.0 
Dimens~iess distance, X 

FIG. 8. Spatial distribution of moisture content inside slab. 
Change from 0 to 80 per cent relative humidity. 

3.0- Moisture cc&ent change 
at centre of stab 

i 
$! 2.0-- Decrwse in 

$ 1.5- 
.* 

E 

.E l.O- 

K = 0.25 

L = 72 

Initial relative humtdity 260% ot 20% 

o.5o I 
5 

I I I I I 
IO 15 20 25 x) 

Square root of dimen~~~ss time, ,/r 

FIG. 9. Change of moisture content at centre of slab. 

A. Slab initially at 2O”C, 60 per cent R.H., then temperature of surrounding increased by 5 degC. 
B. Same initial conditions, temperature decreased 5 de@. 
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5- 

Temperature at 
centre of slab 

0 4- 

8 

= 
,o 3- 
b Parameters 

:: E = 0.0 
‘C o= 

K 4 x 1o-4 
e 
= 2- >= II.61 
‘0 
k 

K = 0.25 

? 
L= 72 

F Initial relative humidity = 60% at 20°C 

I- 

O 5 m 15 20 25 30 

Square root of dimensionless time, Jr 

FIG. 10. Temperature at centre of slab for the same conditions as given in Fig. 9. 

mmmeters 
‘ = o-0 

$4X 10-4 

K=0.2!5 
L = I.6 
k,= I.5xiQ’ 
k25 I.1 x10+ 
s=oB 

I I I I I 
0 10 20 30 40 50 

Time, min 

FIG. Il. Temperature at centre of slab. Change from 0 to 80 per cent and from 80 to 
0 per cent relative humidity. Comparison between experiment and theory. 
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allowing any convective transfer to occur, make 
the results somewhat uncertain. It is seen from 
Fig. 11 that the general shape of the curves 
support the predicted asymmetry (Fig. 1) be- 
tween diffusion into, or out of, the felt. A direct 
comparison between Figs. 11 and 1 is not 
appropriate. While a simple rate equation 
[equation (7)] was used in calculating Fig. 1, 
the more complicated equation (4) had to be 
used to obtain better agreement with experiment 
as indicated by the dotted line in the figure. 

The tentative conclusions to be drawn from 
this experiment and the application of the theory 
to the present case are: 1. Diffusion processes 
into, and out of, the slab are not symmetrical,* 
2. In cases where the overall process is partially 
rate (of sorption) controlled, a fairly detailed 
knowledge of the sorption kinetics is desirable 
and a simplified rate equation such as (7) may 
not suffice. For many purposes, however, 
equation (7) may be adequate. Changes of 
moisture content, for example are not as 
critically affected as temperature. 

CONCLUSION 

The coupled diffusion of heat and mass which 
is treated here by a finite difference solution of 
the basic differential equations presents certain 
advantages and certain disadvantages in com- 
parison with Henry’s analytical method. Among 
the advantages are that an allowance can be 
made to account for the finite rate of sorption of 
the solid phase (textile tibres) and that the 
magnitude of the effect can be judged. Also, a 
better method of incorporating the non-linear 
properties of the system is possible and hence 
the calculation of changes in boundary condi- 
tions over a wider range should be feasible. On 
the other hand, the method does not give the 
physical insight into the problem which the 
analytical solution affords. Hence one may 
conclude that the two methods are comple- 
mentary. 

* This is not because of sorption hysteresis or differences 
in the energies of sorption or desorption, but due to non- 
linearities in the system. 
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APPENDIX 

Numerical Data for Wool Used 
Calculations 

PJT) = 4.5855 + 0.32808 (T - T,) 

+ 0.1172 x 10-l (T - T$ 

+ 0.12793 x 1O-3 (T - T0)3 
+ 0.41848 x 1O-5 (T - T0)5 

in Present 

where T, = 273.2% 

C(C,) = 0.32 ~(1 - E) + C, D51. 
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R&nnC -On a dCcouvert une solution par diffirences finieqbask sur la mkthode de “double balayage", 
pour rtsoudre les tquatiom diffkrentielles non IinCaires qui dCcrivent la diffusion couplk de la chaleur 
et de masse (humiditb) dans les mattriaux textiles hygroscopiques. En plus des tquations de diffusion, 
on a introduit une 6quation de vitesse dtcrivant la vitesse d’tchange d’humiditi entre le solide (fibres 
textiles) et la phase gazeuse (espace des pores). On a fait une application numtrique de la thtorie en 
employant la laine comme exemple pour le matCriau hygroscopique et l’on montrc que de la meme fawn 
que le transport par convection for&e, les transports de I’humiditi de l’air ii la laine et de la laine ii I’air 
ne sont pas des processus symttriques. La grandeur de I’erreur provoqu&e par la nbgligence du transport 
d’humiditi entre les phases solide et gazeuse en comparaison avec l’tchelle de temps des processus de 
diffusion est discutk et l’on montre qu’elle dtpend des dimensions physiques de la plaque. On donne 
Cgalement des exemples de fronts de temptrature et de concentration positifs et nbgatifs qui peuvent 

s’ttablir dans la plaque. 

Zusammenfassung-Mit Hilfe endlicher Differenzen wurde auf Grund der “Double Sweep Methode” 
eine Liisung fiir die nichtlineare Differentialgleichung gefunden, die den gekoppelten Wirme- und Stoff- 
(Feuchtigkeits-) iibergang in hygroskopischen Textilmaterialien beschreiben Zutitzlich zu den Ober- 
gangsgleichungen wurde eine weitere Gleichung eingefiihrf die den Austausch von Feuchtigkeit zwischen 
der festen (Textilfasern) und der gasfijrmigen Phase (Porenraum) angibt Eine numerische Anwendung 
der Theorie wurde an Wolle als hygroskopisches Material durchgefiihrf wobei gezeigt wird, dass Lhnlich 
wie bei Zwangskonvektion die Oberglnge der Feuchtigkeit von Luft an Wolle und von Wolle an Luft 
nicht symmetrische Prozesse darstellen. Die Griisse des Fehlers, der durch Vernachltissigung des 
Feuchtigkeitstransportes zwischen festen und gasfijrmigen Phasen im Vergleich mit dem Zeitmasstab der 
Ubergangsprozesse entsteht wird diskutierf und es wird seine Abhlngigkeit von den Dimensionen der 
Probe gezeigt. Es werden such Beispiele gegeben fiir positive und negative Temperatur- und Konzen- 

trationsfronten, die sich in der Probe ausbilden. 

~IHOTB~~JI---MPTO~~OI ~~;(l~o~lfOlYJ I3bIMeTaHIIHU IIOjIyYeHO 1' “'IIeHIfe II KOHeYHbIX lJa:JHoC'THX 

HeJIIfHettHbIX ilEI~~epellqaaab~IbIx _VpaBHeHHZi &lIfI OfIllCaHIfR COBMeCTHOi% ~@~y3H&f TeIIJIa II 

>IaCCbI (BJIarB)B rLI~POCIEOIIIi'IeCKIix TeKCTIlJIbHbIX MaTepkIanaX. KpOMe ypaBHeHIlti @f@@y3IfII 

IICIIO~b3OBaJIOCb ypaBHeHIfe cKOpOCTI4 I3JIarOO6MeHa Memay TBepAbIM TenJIOM (BOJIOI~II;l 

TKaHII) II l'a30BOti @a3OE"f. (IIOpIfCTOe IIpOCTpaHCTBO). npIfMC!HeHHe TeOpIilI IIpOHJIJIIoCTpIIlW 

Ball0 YIfCZIeHHbIM IIplIMepOM, rye B tiagecTBe rmpocKom~ecKor0 MaTepHana B3flTa rrrepcTh. 

II ffoKa:3aIIo, qT0 nepeaoc mam 0~ Boanyxa K mepcTI4 14 0T IuepcTIf K noaayxy, aIianorIfwbIii 

MacCOO6MeHy fIpIf BbIH~H;~eHHOti KOHBeK~I~III, He HBJIFleTCR CMMMeTpIIYHbIM IIpO~eWOM. 

I~emfsma norpemHocTIr n pe3y.nbTaTe npeIie6peHteHm cftopocTbIo Bnaroo6MeHa MemKn> 

~13epflofi II ra3oBofi @a3amf pac0faTpmaeTcrI B cpaBIIeKIm co IuKanoti upeMeKIf na(@ymo~- 

IIbIX IIpOI~eCCOB, II fIOKa3aHO. 'IT0 3Ta BeJIllYllHa 3aBEICIfT OT ~IfDIIYeCKMX pa3MepOB IIJIIiTbI. 

1~pIIRo~RTCH IIlWMelW 170.~0iKIfTeJIbIIbIX II OTpkfQaTeJIbHbIX IjJpOIITOR TeMITe~aTylJbf II KOHIIPH- 

Tl)RI{IIIf, 1303MO1KHhlX B IIJIIfTP. 


